Business Case Study

Circularity Program - Lithium Ion Battery Value Chain

FutureBridge

Case study (1 / 2): Global Study on Circularity Program - Lithium Ion Battery Value Chain

Client

Leading global Industrial gas company

Industry

Chemicals

Product

Industrial gas

Context

- The client wants to understand the market opportunity of various gases used in the battery recycling process.
- The client is also interested to know about the leading battery recycling technologies across the globe

Key business questions

- Who are the key recyclers dominate the global battery recycling market >> Key companies (~3-5)
- Which are the key technologies adopted by the key players; liaising approach with different parties with in the value chain
- What is the global battery recycling and battery production market?

Engagement scope

1 lobal lithium ion battery market

- How big is the global lithium ion battery market?
- Who are the leading battery manufacturers across the globe?
- Which are the key application segments for global lithium ion battery market?
- What are the key market drivers and restraints for global lithium ion battery market.
- What is the capacity in the global lithium ion battery value chain?

2 Blobal battery recycling market

- What is the global battery recycling market size?
- Who are the key players in the global battery recycling?
- Which are the key battery recycling technologies?
- Innovation / IP developments during last 3 years
- Developments in the TRL status of technology of recycling technologies
- What is Investments, funding trends in the global battery market

3 Gas-enabled technologies

- Innovation / IP developments during last 3 years
- Developments in the TRL status of technology of gas-enabled technologies
- Developments with regards to participation of entities / players in the ecosystem
- Average price of gas used in the battery recycling

Key findings and conclusions

- Decision making process for arriving at price of model
- Estimated addressable gas opportunity for the current and forecast year

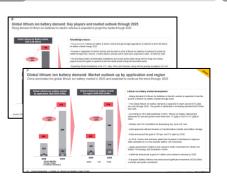
Case study (2 / 2): Global Study on Circularity Program - Lithium Ion Battery Value Chain

Research methodology

Secondary research

- Paid commercial databases,
- Company, analyst, trade journal, association, etc. publications

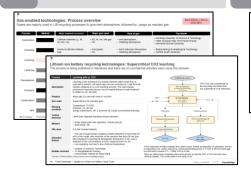
Primary research

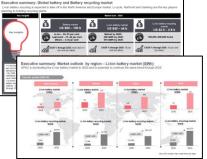

- 50+ telephonic interviews with major digital service providers; startups; key opinion leaders; independent consultants and analysts; etc.
- 3–5 hours of consultations with industry experts (20+ years of industry experience)

Benefits to Client

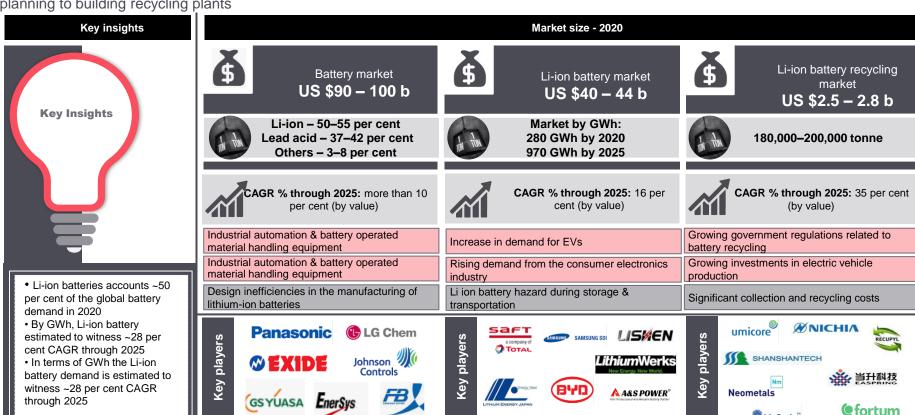
- The output of the study helped client gauge market attractiveness (at aggregate and industry level) for gas used in the battery recycling
- Helped client to understand the current and upcoming technologies w.r.t battery recycling

Sample analysis


1 lobal lithium ion battery market


2 Global battery recycling market

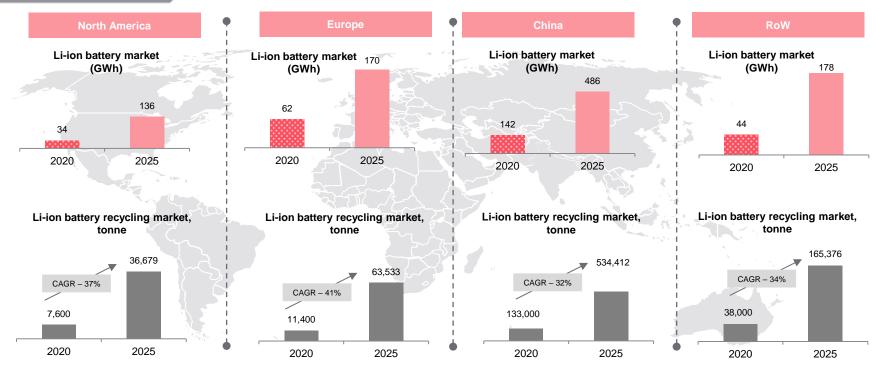
3 Gas-enabled technologies



Key findings and conclusions

Executive summary: Global battery and Battery recycling market

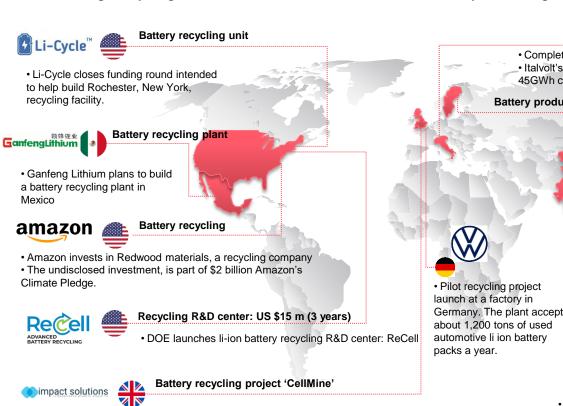
Li-ion battery recycling is expected to take off in the North America and Europe market. Li-cycle, Northvolt and Ganfeng are the key players planning to building recycling plants



Li-Cvcle

Executive summary: Market outlook by region – Li-ion battery market (GWh)

APAC is dominating the Li-ion battery market in 2020 and is expected to continue the same trend through 2025



Note: APAC includes China, South Korea and Japan

Executive summary: Li-ion battery recycling – recent investment, expansion & partnership activities

There is a high recycling unit investment witnessed in APAC in recent years owing to emerging EV market in these region.

Ecosurety has awarded a total of US \$609,905 to four UK-based innovation and research

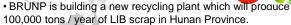
projects offering recycling and reuse solutions among which Impact solutions is one.

Battery production facility: US \$4.9 b

- Completion: 2024
- Italvolt's planned gigafactory will meet the 300,000 square metre plant's initial 45GWh capacity and also plans to set up a recycling plant alongside.

Battery production, R&D & Recycling unit: US \$600 m

- Plans to establish initial capacity of 4 GWh for LIB recycling.
- This will become the largest in the world with an initial capacity of 4 GWh, and the only large-scale facility in Europe capable of recycling lithium in addition to cobalt, nickel, manganese and other metals.


Battery recycling unit

- SungEel: Plans to increase to 56,000 tonnes per year, through their South Korean hydrometallurgical plant
- GD engineering: Investment of USD 86 million for recycling unit construction
 - Battery recycling unit

• Commission: 2020

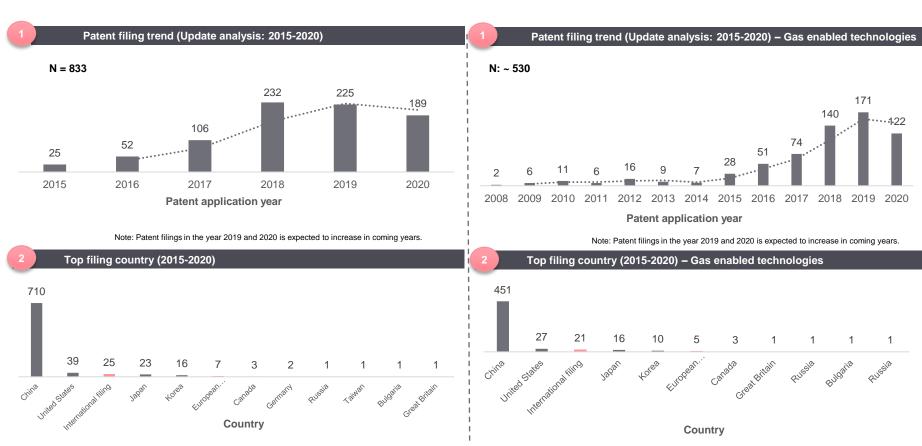
Battery recycling unit: US \$680 m

Suzuki, Toshiba and Denso formed a partnership to produce and recycle li-ion batteries in India.

Battery recycling unit

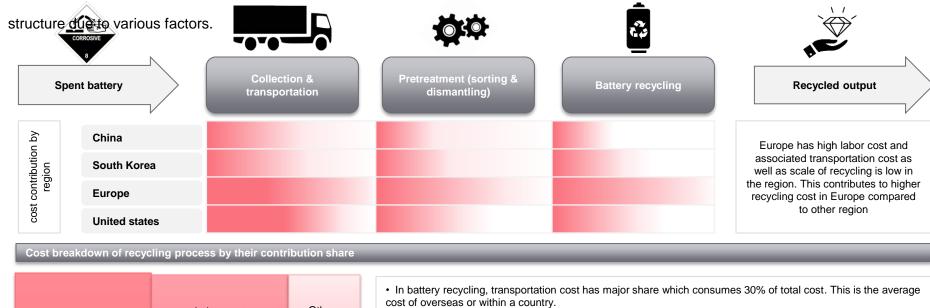
- Tata Chemicals launches li-ion battery recycling operations
- Mahindra Electric to set up battery manufacturing & recycling plant
- Indian EV startup eBikeGo begins drive to recycle their lithium batteries

Executive summary: Recycling technologies – process overview


Mechanical recycling Pretreatment

Most of the pyro metallurgical process uses gases like oxygen and inert agents for most of their processes

Process	Method	Description	Substitute for gas	TRL level	Players
Leaching		Leaching is the loss or extraction of certain materials from a carrier into a liquid.	Acid and base solutions which act as reactants. E.g. Sulphuric acid	9 (Commercialized)	Anhui Dewin New Material TechnologyRetrieve tecnologiesHunan Brunp Recycling
Crushing/ Milling		The method used to reduce the size of battery for further processing using millers/ crushers.	Water solution are used in wet crushing to avoid battery explosion	9 (Commercialized)	Central South UniversityKawasaki Heavy IndustriesRetrieve tecnologies
Precipitation		The process of precipitating the metal based component in their salt form from the leachants.	 Instead of using CO2 gas, carbonate solutions are used as reactants. 	9 (Commercialized)	Retrieve technologiesTianqi LithiumHefei Guoxuan High Tech Power Energy
Discharging		The process of removing the left over charge in a spent battery before subjecting it to further recycling process.	This process uses no reagents	9 (Commercialized)	LasertecZhang ShengweiKunming University
Calcination		Calcination, the heating of batteries to a high temperature for the purpose of removing volatile substances	 Calcination could use O2 or use non-oxidizing atmosphere (N2 gas) 	9 (Commercialized)	Changsha Shunyang Metal ProductGuangdong Jiana Energy TechnologyXi An Heimdal Energy Storage Material
Roasting		The process of subjecting batteries to high- temperature in order to recover electrode materials as black mass.	The process could use reactive gas or could use non-oxidizing gas	9 (Commercialized)	Beijing Mining & Metallurgical TechnologyCentral South UniversityYinlong Energy
Disassembling		The process where the operator removes components of the battery pack for further processing	Inert gas is used for non reactive atmosphere	9 (Commercialized)	Anhua Tyson Cycle TechnologyCN InnovationsJiangxi University of science & Techonology
Pyrolysis	Hydrometallurgy	Process of chemically decomposing batteries at elevated temperatures in the absence of oxygen. Condition: 430 °C, under pressure.	The process usually use nitrogen as protective gas	9 (Commercialized)	Changsha Silicon Cement Technology Development Xiangtan University


IP Landscaping: Patent filing trend and countries

Patent filing for battery recycling processes has drastically increased in past few years.

Executive summary: Li ion battery recycling cost structure

Geographically, Europe has most expensive battery recycling cost structure followed by USA. China has most economical recycling cost

- Transportation cost (25-30%)

 Material/utility cost (20-25%)

 Waste managem ent (2%)
- · Labor cost is second most expensive cost factor in recycling which is around 25-30% of entire recycling cost.
- Variable expense is contributed to the material cost involved in recycling process which is third most cost intensive factor.
- Waste management like flue gas/ waste water emission treatment contributes to just 2% of entire recycling cost.

Thank you

North America

55 Madison Ave, Suite 400 Morristown, NJ 07960 USA T: +1 212 835 1590

Europe

328-334 Graadt van Roggenweg 4th Floor, Utrecht, 3531 AH Netherlands T: +31 30 298 2108

United Kingdom

5 Chancery Lane London EC4A 1BL United Kingdom T: +44 207 406 7548

Asia Pacific

Millennium Business Park Sector 3, Building # 4, Mahape Navi Mumbai 400 710 India T: +91 22 6772 5700