

Q2 2020 | Pulse Carbon Capture Utilization & Storage

WHAT'S INSIDE!

What are the major technological developments?

What are the key activities of a CCUS business?

How are the legislation and policy marching ahead in this space?

Which are the latest government funding / investment / public private partnership schemes?

Which start-ups are creating buzz?

01

Pulse themes

- Carbon capture: Technology developments a.
- Carbon conversion & utilization: Technology developments b.
- Business activities C.
- d. Legislation and policy
- Highlights of key projects e.
- Government / public private funding & investment to support CCUS activities f.

Quarterly review of early-stage research

a. b.

Patent activities Academic review

Startup highlights Key startups a.

Emerging trends

Innovations in carbon capture

FutureBridge Perspective

- The urgent abatement of CO₂ emissions relies on the development of new, and efficient technologies to capture CO₂ from existing industrial plants: membrane-based CO₂ separation is an attractive carbon capture technology
- Thin-film composite membranes are particularly attractive because they provide high gas permeance in comparison with conventional thicker (~50 µm) dense membranes

DEVELOPMENTS

Carbon capture: Technology developments

Newcastle University Dendritic silver self-assembly in molten-carbonate membranes for efficient carbon dioxide capture

29th April 2020

Researchers have developed a selfassembling silver membrane with the highest flux of Ag-supported molten-salt membranes to date (1.25 ml min⁻¹ cm⁻² at 650 °C) and ultrahigh permeability (9.4 × 10-11 mol m⁻¹ s-1 Pa⁻¹) for postcombustion CO₂ capture

>

Computational design of a photoresponsive metal-organic framework for postcombustion carbon capture

26th May 2020

Researchers have proposed the photoresponsive metal-organic framework for CO₂ capture; computational simulations indicated that the photochemically induced trans-to-cis transition of the material leads to significant alteration in the CO₂ capacity with adsorption capacity of 89.6 cm³/g

THE OHIO STATE UNIVERSITY

Nanometer-thick supported graphene Oxide membrane for CO₂ capture

10th June 2020

The optimized membranes of graphene oxide showed CO₂ permeance (flux/pressure difference) of 5.7×10-8 [mol/(m² s·Pa)] (183 GPU) and CO₂/N₂ selectivity of 259 at 57°C in a wet mixture of 20% CO2 and 80% N2

Trends Emerging Some of the major technological developments in the field of carbon capture in this quarter:

Researchers (Cameron Halliday, et.al.) from Massachusetts Institute of Technology demonstrated the performance of molten alkali metal borates, a new class of materials, at the bench scale, highlighting the ability to operate isothermally at high temperatures through the use of steam as a sweep gas; the ability to capture over 99.9% of incoming CO₂ even at low concentrations or to capture~90% CO₂ under high flow rates and utilize a greater portion of the sorbent capacity

Zhejiang University (Wei Yu, et.al.) has proposed a microencapsulated carbon sorbents that are considered as promising materials for enhanced CO₂ capture owing to their drastically increased gas-liquid contacting area

Innovations in CO₂ conversion & utilization

FutureBridge Perspective

- Recently, more than twenty reactions involving CO₂ as feedstock have been developed to produce valuable chemicals, such as alcohols, hydrocarbons, esters, and so on
- Heterogeneous catalysts (such as carbon-based catalysts, silicas, MOF, etc.) are more desirable for CCU in view of their advantages such as easy product separation, purification and facile catalyst recycle compared with homogeneous catalysts

DEVELOPMENTS

CO₂ conversion & utilization (CCU): Technology developments

Achieving the transformation of captured CO₂ to cyclic carbonates

30th April 2020

Work highlights the synthesis of a novel heterogeneous catalyst Bp-POF-Cu and the tandem utilization of captured CO₂ via the catalytic reaction by BpPOF-Cu to synthesis of cyclic carbonate without any CO₂ purification and compression steps

Interfacial engineering of PdAg/TiO₂ with a metal-organic framework to promote the hydrogenation of CO₂ to formic acid

8th May 2020

Researchers have developed a modified PdAg/TiO₂ catalyst with an metal-organic framework (ZIF-8) using a facile pretreatment method. The resulting PdAg/TiO₂@ZIF-8 enhanced the selective hydrogenation of CO₂ to produce formic acid even under relatively mild reaction conditions (2.0 MPa, 100°C)

A catalytic domino approach toward oxo-alkyl carbonates and polycarbonates from CO₂

3rd June 2020

Researchers have explored the domino reaction between propargylic alcohols, carbon dioxide and various alcohols with the dual objective to prepare oxo-alkylcarbonates with a high vield and selectivity under mild conditions and to extend the process to the synthesis of phosgene-free polycarbonates

Some of the major technological developments in the field of CCU in this guarter:

Researchers (Wenchao Ma, et.al.) from Xiamen University developed a fluorinemodified copper catalyst that exhibits an ultrahigh current density of 1.6 A cm⁻² with a C₂ (mainly ethylene and ethanol) Faradaic efficiency of 80% for electrocatalytic CO₂ reduction in a flow cell

Durham University (L. Jiang, et.al.) has proposed a new study on polyethylene furandicarboxylate produced from industrial CO₂ emissions and non-food-derived biomass to provide an alternative for polyethylene terephthalate for packaging application

Highlights of key business activities (Q2 2020)

.

key business activities (Q2 2020)			
WKiewit	April 15, 2020: Kiewit has signed partnership agreement with Mitsubishi Heavy Industries America and Sargent & Lundy on carbon-capture retrofit plant		
	May 07, 2020: Inovyn announced to build power-to-methanol plant with consortium members		
LafargeHolcim	May 20, 2020: LafargeHolcim has signed a long-term collaboration framework agreement with Solidia Technologies		
MAN Energy Solutions	May 26, 2020: MAN Energy Solutions won CCUS contract		
preem	May 26, 2020: Preem CCS launched Sweden's largest CCUS plant		
Petrofac 🏚	June 10, 2020: Petrofac secured contract for Acorn CCS and hydrogen project		
Aker Solutions	June 16, 2020: Aker Solutions has signed agreement to deliver CO ₂ capture plant for Norcem		
LAFARGE	June 24, 2020: Lafarge, OMV VERBUND and Borealis joined hands for carbon capture and utilization		

FutureBridge Analyst Comments:

 Public and the private sectors are joining hands together on joint execution plans and funding that is focused on ultimate efficacy and long-term impact of CCUS project. The joint partnerships to be major drivers for advancing CCUS technology economy

Highlights of key legislation and policy activities (Q2 2020)

key legislation and policy (Q2 2020)				
	April 12, 2020: The governor of Virginia (USA) signed the Virginia Clean Economy Act into law			
+	May 06, 2020: EU, and Switzerland carbon trading link postponed			
and the second sec	May 21, 2020: Australia's federal government released its technology investment roadmap for reducing CO ₂ emissions over the next 30 years			
••• * ••• ••• * •• GOV.UK	May 21, 2020: UK government draft accord sets path for future UK-EU CO ₂ trading			
WIRS	May 28, 2020: <u>Treasury department</u> , the United States, proposes regulations to govern tax credits for carbon capture and <u>sequestration</u>			

FutureBridge Analyst Comments:

- The proposed regulations around Section 45Q released by the Internal Revenue Service (IRS) is an important development because it would provide guidance as to how the IRS will treat claims for carbon sequestration tax credits based on Section 45Q of the Tax Code
- For taxpayers seeking credit for carbon "utilization", the statutory term that includes carbon capture through <u>photosynthetic and chemosynthetic processes and</u> <u>through carbon captured for "commercial markets"</u>, the rules require that the amount of carbon captured and sequestered be demonstrated through a life-cycle carbon analysis meeting ISO 14044:2006 ("Environmental management – Life cycle assessment – Requirements and guidelines") that has either been performed or verified by a qualified third party

Highlights of key projects - LEILAC project phase II

0

After promising results from the first phase of the Low Emissions Intensity Lime and Cement (LEILAC) project, HeidelbergCement is starting the further development and scale-up of the LEILAC technology together with the Australian technology company Calix and a European consortium

LEILAC partners

Highlights of the Project

- In phase II, construction of a demonstration plant that will aim to capture around 20% of a full-scale cement plant's process CO₂ emissions (100,000 TPA of CO₂), whereas, in phase I, a CO₂ separation pilot plant with a capacity of 25,000 tonnes per year was constructed at the HeidelbergCement plant in Lixhe, Belgium
- Like its predecessor phase I (€21 million), the phase II project is based on Calix's innovative calcination technology and is supported with €16 million from the EU research funding programme Horizon 2020
- LEILAC technology (Direct separation technology, separation of CO₂ with >95% purity) has potential to reduce significant cost and operating advantages over competing technologies such as amine CO₂ capture and oxyfuel
- Commercialisation strategy involves proof of demonstration by 2025
- Revenue would be generated through license or royalty arrangements will be sought from those wishing to use the technology, delivered via engineering and technology partners

United Kingdom Research and Innovation is anticipating that their plan could result in the capturing and storage of around 10% of the UK's carbon dioxide emissions per year by 2040; this can lead the way in the UK's transition to a net zero carbon cluster in the future and would unlock the major local economic benefits by utilising emerging CCS and hydrogen solutions

 \simeq DEVELOPMENTS

CCUS projects gain funding from **UK Research and Innovation**

16th April 2020

The consortium of 10 energy and 1 industrial companies secured £1 million funding from UK Research and Innovation to use carbon capture and storage and hydrogen technology to decarbonise energy production and industry in the Humber region of Northern England

24th April 2020

R&D projects will fall under two areas of interest: 1) Initial engineering design for CO₂ capture from industrial sources; and 2) Engineering-scale testing of transformational post-combustion CO₂ capture technologies through one new funding opportunity announcement (FOA) and the winners of five project selections from a previous FOA

Climeworks AG raised \$75 million

2nd June 2020

£ climeworks

This is the largest private investment into direct air capture to date. The funding will help to drive forward the Climeworks's scale-up roadmap and expand its carbon dioxide removal capacities

Apart from Climeworks, Canadian startup Carbon Engineering and U.S. startup Global Thermostat are also looking to scale up direct air capture technology. Like with most technologies at early stages, it's expensive often costing more than \$250 per metric ton of carbon dioxide captured

Climeworks offers offset subscriptions to individuals at €1 euro per kilogram of carbon dioxide captured, which works out to about \$1,100 per metric ton

FutureBridge Analyst Comments: Bilateral partnerships and funding will accelerate the demonstration of CCUS technologies; will identify, & reduce and or eliminate general and country-specific technical, regulatory, institutional, financial, economic, environmental, and social barriers to CCUS technology demonstration; and commerclization

Quarterly academic review

Patenting activity – CCUS

.

Patenting act	ivity, Q2 2020	Top countries, Q2 2020	
Total number of patents published	932		
Number of patents published in Jan	290	378	
Number of patents published in Feb	312		
Number of patents published in March	330	268	
Patents Pending (%)	46%		
Patents Granted (%)	54%		
Top assigne	es, Q2 2020	122	
UOP BASF PRAXAIR TECHNOLOGY TOSHIBA HUAZHONG UNIVERSITY OF KOREA INSTITUTE OF ENERGY AIR LIQUIDE IFP ENERGIES NOUVELLES MITSUBISHI HEAVY INDUSTRIES EXXONMOBIL UPSTREAM RESEARCH	11 12 14 16 15 18 21 25 28 38	China US Japan Korea France Canany UK India North	13 10

Source: Orbit

Academic review – A Robust, scalable platform for the electrochemical conversion of CO₂ to formate: Identifying pathways to higher energy efficiencies

Technology description – Electrochemical conversion of CO₂, published on May 11, 2020

Image: Schematic illustration (a) and cell architecture (b) for a full BPM MEA setup, and the formate FE (c) tested in this cell with NafionTM or anion-exchange ionomer in the cathode GDE; 0.5 mg cm⁻² SnO₂ loading was used in all the tests

FutureBridge Perspective

- Research work demonstrated a robust, scalable cell architecture for up to 90% faradaic efficiency for the conversion of CO₂ to formate at 500 mA/cm² that was realized at a 25 cm² gas diffusion electrode with a carbon-supported SnO₂ electrocatalyst
- A 1.27 mm thick catholyte was used between the bipolar membrane and cathode gas diffusion electrode, which could be further reduced to tens of micrometers upon refinement
- The deconvolution of the potential drop from each individual component/process guides the pathways to higher energy efficiencies of CO₂
- In recent years, remarkable efforts have been made towards the electrochemical reduction of CO₂ into value-added chemicals and fuels, such as carbon monoxide, formic acid/formate, ethylene, ethanol, methane and methanol
- When coupled with renewable energy sources, CO₂ conversion is an attractive approach for utilizing carbon chemical feed stocks while reducing CO₂ emissions and closing the anthropogenic carbon loop

O3 Startup highlights

Funding distribution & activities

North America

55 Madison Ave, Suite 400 Morristown, NJ 07960 USA T: +1 212 835 1590

Europe

328-334 Graadt van Roggenweg 4th Floor, Utrecht, 3531 AH Netherlands T: +31 30 298 2108

United Kingdom

5 Chancery Lane London EC4A 1BL United Kingdom T: +44 207 406 7548

Asia Pacific

Millennium Business Park Sector 3, Building # 4, Mahape Navi Mumbai 400 710 India T: +91 22 6772 5700

